AD=ADS0 294 NEW YORK INST OF TECH OLD WESTSURY F/76 972 .

UNCLASSIFIED

FUNCTIONAL SOFTWARE DEVELOPMENT. (V)

NOV 77 M M DROSSMAN

AFOSR=77=3205%
AFOSR=TR=78-0110 NL -

{ 2 SR St g

YA SR

S!CU“IYV CI*SLLCAYION OF THIS PAGE (When Ilula Iurarml) 1

READ INSTRUCTIONS
: BPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM]
/}/ GOVT ‘LCESS'ON NO.| 3. RECIPIENT'S CATALOG NUMBER 2
78-9114| ke :
K et D COVERED
FUNCTIONAL §0FTWARE£EVELOPMENT. J// Final re#")

6. PERFORMING OG. REPORT NUMBER

NUMBER(s)
@, : AFESR-77-32g5 ’/;w ‘

Melvyn M./Drossman

9. PERFORMING ORGANIZATION NAME AND ADDRESS

an
c New York Institute of Technology /
v
[
<

Wheatley Rd

0ld Westbury, NY 11568 Besiedl -
11. CONTROLLING OFFICE NAME AND ADDRESS II 1 1‘
Air Force Office of Scientific Research/NM No 77 2 -
Bolling aFB, DC 20332

66

. MONITORING AGENCY NAME & ADORESS(/! dilferent from Controlling Office) 1S. SECURITY CL ASS. (of this report)

) i
f a UNCLASSIFIED
1Sa, DECL ASSIFICATION/ DOWNGRADING
3 SCHEDULE
i o 16. DISTRIBUTION STATEMENT (of this Report)
; ! Approved for public release; distribution unlimited.
P Lad
i, DDC
emomwEETy
v p) (‘r" £ Hﬂﬂﬂ
g :
- -
% u 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i{ dilterent lrom Report) v FEB
R —
e |
! N F !
: 8. SUPPLEMENTARY NOTES G b

BEST AVAILAZLE (O

19. KEY WORDS (Continue on reverse side Il necessary and identily by block number)

Y 392,979 -

\1 20. ABSTRACT (Continue on reverse side If y end identily by block number)

b Functional software development is a system for the development of high-
quality digital computer software, It has two components; functional
design for design, and functional programming for program implementation.
Functional design has been documented and the feasibility of functional
programming is demonstrated.

Functional design is a top-down graphical method based on the concepts

DD ,"on'7s 1473 eoimion oF 1 nov 68 15 owsoLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PU— e e et e ey - —p——————— I —

ORG24 RSB Y EEE SN -

e I S A TN PN S v a4

E———
b v . . LI B

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) -
& : 3 ‘ g
é 2 c
20. Abstract 5 e ot ; :

of nested-virtual machines and matching program structure to data
structure. Programs developed using these techniques consist of a set of
functionally cohesive modules w bse linkages are automatically handled

by the language processor compo*ent of the functional programming

system. As airesult, they should be easily maintained and reliable.

X \

v/

SN for

SECURITY CLASMPICATION OF Tu'* PAGE(When Dote Entered)
A ——— L ———

-

oo

AFOSRTR- 78-0110

ATIR FORCE OFFICE OF SCIENTIFIC RESEARCH
FINAL SCIENTIFIC REPORT

FROM: Melvyn M. Drossman
New York Institute of Technology
Wheatley Road
0l1d Westbury, NY 11568

- TO: AFOSR/PM

Bldg. 410
Bolling AFB DC 20332

Report Date: 14 November 1977

Grant No: AFOSR-77 3205

Signed: MW P ,{ﬂ[é‘f/zm
Title: Chairman, Computer Science and

Electrical Engineering Technology

JA®a &

—

e

v oo U s T o D b e S A5

o

AIR FORCR OFFICE OF SCIENTIFPIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL 70 DDC

This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b) «
Distribution is unlimited.

A. D. BLOSE

Technical Information Officer BT EEN

B P - g RS

FUNCTIONAL SOFTWARE DEVELOPMENT

Melvyn M. Drossman

1. _Tntroduction

Advances in digital computer hardware have made it
possible for computers to process programs whose complexity
exceeds that which most designers are presently capable of
effectively handling. This disparity between the
state-of-the-art in the area of computer hardware and that in
computer software production has resulted in the generation of
a large quantity of inferior computer software.

Recognition of this problem is evidenced by research
studies in the area of software quality factors. The purpose
of these efforts is to define and quantify measures for the
evaluation and comparison of the quality of software products.
The entire field of software engineering is a response to this
problem and an attempt to advance the state of the art of
software development. A number of methods for the creation of
better guality software have been reported. A variety of
approaches are taken in these methods but most deal with the
programming (implementaticn) phase or the design phase.
Considerable effort is also being expended 1in the areas of
testing, verifiction, and validation.

Functional Software Development (FSD) is 2 system for the
design and implementation of computer software which insures
that the software product will have certain properties which
are associated with high quality. Furthermore, it provides a
well-defined approach to the software design process starting
at a much earlier phase than most other methods do. This
characteristic is important because of the critical nature of
the earliest design decisions; if these are not well thought
out the ultimte software product cannot be of high quality no
matter how excellent the subsequent design and implementation
techniques are.

2. Background

It is necessary to have some familiarity with the work
that has been done in the area of software quality factors and
in software design and implementation methods in order to
understand the reasons for, and advantages resulting from, the
use of the various procedures incorporated in FSD.

2.1 Software Quality Factors

Efforts in the establishment of software guality factors
have been directed toward the definition and quantification of
those characteristics of software products which users
consider in arriving at a measure of a product's "quality.".

ety s AT

FUNCTIONAL S50OFTWARE DEVELOPMENT
PAGE 2

A rather extensive early vreport by a group at TRW (4)
oresents a hierarchical set of guality factors in which each
factor on a given level 1is determined by a subset of the
factors on the preceding level.

A group of investigators at General Electric present a set
of eleven software guality factors (12,13) as part of the
preliminary results of a project they are currently engaged
in. The values of the software quality factors are determined
by the velues of a set of software gquality criteria. These
are found by static measuremeng,i.e., examination of program
listings and other documentation as opposed to dynamic
measurement which involves running the program.

Drossman (7) presents ten software quality factors based
on those presented in the TRW and General Electric studies and
interviews with a number of software users. The results of
these interviews indicate that the relative importance
associated with each factor tends to be related to the
application environment 1in which the software is to be used.
A description of these ten factors follows:

1. Correctness

Correctness refers to the degree to which a program
satisfies the specifications and computes results
according to these specifications. This implies
satisfactory accuracy and precision. Errors in
program performance resulting from errors in
specification are not considered in determining the
correctness of the software.

2. Efficiency

Efficiency refers to the efficiency of utilization of
computer hardware, including the central processing
unit, memory, peripheral devices, and system
software. This factor is measured by the guantity of
these resources which are used and the amount of time
during which they are used. It includes both
compilation and other program processing, and the
program execution. Efficiency does not refer to the
efficiency of designing, writing, testing, or
debugging the program; these items are incorporated
in other factors.

3. Flexibility

o

Flexibility refers to the degree to which a2 software
product can be applied to a vacriety of applications.

e g S

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 3

Measurement of this factor includes consideration of

the simplicity of modifying the software for
the applications as well as the breadth of
applications. Software packages consisting of

standard modules which can be combined in various
arrangements for different applications sre more
flexible than software designed as a single unit,

Flexibility results in greater efficiency for the
designer and programmer because it is more frequently
possible to use existing modules; this aspect is
sometimes referred to as code reusability. The use
of existing modules also enhances reliability because
these modules have generally been used to &a 1larger
degree and are therefore more likely to be free of
errors. ;

Integrity
Integrity 1is the degree to which the software,
including the program and its data bases, are
protected from unauthorized access and modification.

Interoperability

Interoperability refers to the degree to which a
software product may be interfaced to other software
for the purposes of building a more comprehensive
system, to support the operation of the software
product itself, or to support the operation of the
software t2 which it is being interfaced.

Maintainability

Maintainability refers to the ease with which a
software product may be modified either to correct
errors or to satisfy changed specifications. This
includes location of the error or scgments to be
changed, as well as implementation of the change.
This factor is extremely important because of the
large amounts of money being expended on software; it
is estimated that sixty percent of 211 computer
related expenditures by the Department of
Defense are for software. (3)

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 4

Portability refers to the degree to which a software
product designed for a given hardware/software
confiquration, i.e., machine 2nd operating system,
can be moved to another system. Included in this
factor is 2 measure of the ease with which eany
required modifications can be made.

8. Reliability

Reliability refers to the degree to which a program
continues to operate correctly after a period of
usage and maintenance and despite changes in its
environment, e.g., changes of peripherals, operating
system modifications. This last aspect, the ability
to operate satisfactorily despite changes and
degradation in the environment, is sometimes called
robustness.

9. Testability

Testability refers to the degree of confidence 1in a
software product that one can gain by a given amount
of effort spent in testing. 1If it is possible, with
a given effort, to exercise all flowchart paths and
test for all critical data values, the program has 2
higher degree of testability than one for which only
fifty percent of the paths can be exercised with the
same effort devoted to testing.

10. Usability

Usability refers to the ease with which a software
product can be used. Considerations included in the
measurement of wusability are installation effort,
effort needed to learn how to use it, effort required
for preparation and entry of input, and effort
required for interpretation of output.

There 1is general agreement in the literature that certain
approaches to software design and implementation result in
improved quality. Many of the methods for software design and
production incorporate these approaches. A few of the
important general concepts of software design are discussed
before considering more specific methods.

Program Modularization
One of the problems in designing complex software is the

sheer size of the program and the task which it is intended to
perform. The number of functions and their interaction makes

R —

T S S - BRI

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 5

it difficult for designers and programmers to maintain a
grasp on the entire program. Separation of the program into
modules relieves this problem to a considerable extent by
permitting designers and programmers to consider a number of
more limited problems, 1i.e., to separete the problem into 3
number of smaller problems. Modularization 1is part of the
solution to the problen of designing complex software but, in
itself, is not the complete solution. Two problems are
inherent in modularization: determining what functions should
be incorporated in each module, and designing the interfaces
between modules. Many design methods are directed toward the
solution of one or both of these problems.

Top-down approach

Software design/programming methods may be characterized
as being top-down or bottom-up. In practice, virtually all
methods wuse a combination of both approaches but frequently
one will predominate over the other.

In the top-down approach the designer starts by
considering the overall problem and separating it into a
number of sub-problems each of which will be handled by a
subprogram. Then each sub-problem is divided into still
smaller sub-problems which are solved by lower level
subprograms. The programming effort is handled in a parallel
fashion: the main program is written first and is primarily a
sequence of subroutine calls; each of the top-level
subroutines is written next and these invoke lower-level
subroutines which are written next, and so on.

In the bottom-up approach the designer identifies the most
basic functions which have to be performed; these are
programmed first. Then these modules are integrated to form
larger modules and so on until the main program which solves
the entire problem has been generated.

It is widely held that methods which are predominantly
top-down are better than those which are mainly bottom-up. (2)
The major advantages of top-down design over bottom-up design
relate to interfacing and testing. Interfaces are attended to
in the initial design and form an integral part of the design
rather than being elements which are added on after the
modules are complete. Testing is simplified because driver
routines need not be written to test individual modules. The
top-down approach is generally associated with Harlan Mills
who wused it in conjunction with the chief-programmer team
management technique and structured programming to achieve
very high productivity on a project to develop an information
retrieval system for the New York Times. (1)

et e < - .

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 6

Nested-virtual Machines

This is a concept proposed by Dijkstra (2) which results
in a top-down modularization of a program. The designer
starts by assuming the existence of a machine that contains in
its langu2ge an instruction which performs the entire function
of the proram to be written. The program then consists of
this single instruction. The next task is to simulate this
virtual machine which really does not exist. The designer
divides the function of this virtual machine instruction into
a number of major sub-functions and assumes the availability
of a machine whose instruction set contains instructions that
implement each of these major sub-functions. Using these
instructions a program is written which simulates the original
virtual machine. This process is repeated, each time assuming
the existence of a virtual machine whose instructions are of a
lower 1level than those of the preceding virtual machine which
is being simulated, until a point 1is reached at which the
instructions are those of an existing machine or language.

The benefits of this approach, beyond the top-down
modularizetion are that the interfaces between modules are
well defined and changes in a given module can be made rather
easily because the modules &are independent of each other.
This approach is classified as a concept rather than a method
because the complexity of the data structures preclude direct
implementation of the procedures as outlined above. A number
of design and implementation methods based on these and other
approaches have been developed. A discussion of some of
these, especially those relavent to FSD follows:

Structured Programming

In the minds of many programmers structured programming is
synonymous with programming without the use of the GOTO
statement. This is a consequence of a letter by Dijkstra (6)
in which he indicates that programs can be written without the
GOTO statement &and they will be better structured programs.
Structured programming encompasses much more than this
however . The important concept of structured programming is
to limit the programmer's building blocks so as to achieve
simpler program structures. This is intended to insure that
designers and programmers can grasp the function and operation
of the programs they are working on. Structured programming
limits program structures to three constructs (19): sequences
of operations, the IF-THEN-ELSE decision and the DO-WHILE
iterative 1loop. Flow charts for these constructs are shown in
Fig. 1. 1Tn addition to limiting the variety of constructs,
the structure constraints also insure that each program
sagment has a single entry-point and a single exit point.

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 7

Structured Desiqn (Composite Design)

Structured Design (3lso referred to as Composite Design)
is a procedure based on the modularization of pbrograms. There
are three major concepts involved in this method: (1) module
cohesion, (2) module coupling, and (3) program decomposition.

Module cohesion is concerned with the functions
encompassed by a single module. Several 1levels of cohesion
are defined. On the 1lowest 1level, the various functions

grouped into a2 module are unrelated to each other and are not
in any way associateed with each other. On the highest level,
called functional binding, the functions included in a module
are functionally related to each other. The objective of
Structured Design 1is to try to achieve as high a level of
cohesion, or binding, in each module as possible.

Module coupling is concerned with the 1interfaces between
modules. Several 1levels of module coupling are defined; the
greater the inter-connections and interactions between
modules, the higher their coupling. The objective in
Structured Design is to achieve as low a level of coupling
between modules as possible.

The overall aim in Structured Design 1is to have each
program function localized in a single module with as 1little
interaction between functions as possible. This permits the
designer to concentrate on a single module at a time and the
programmer . to write each module as a relatively
independent functional entity. This functional isolation of
modules facilitates both testing and maintenance.

Program decomposition 1is the process of partitioning a

problem into subproblems for which program modules are

; written. Graphical representations, called structure charts,

are used to show the hierarchical modules structure and the

inputs to each module. Two prototype program structures are

; presented: one is an input-process-output paradigm and the
! other is an assembly line type of structure.

Jackson Method

The central concept of the Jackson Method (10) is that
program structure should match data structure. Tt is claimed
that such an approach results in effective program structures
which do not depend on the cleverness of the program designer.
It is reasonable that program structure and data structure
should be similar. The designer is not dependent on inspired
insight into the program modularization since the data
structure, assuming it is known, provides the basis for the
program structure.

|
i
{

.

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 8

Qther Methods

Various additional software develovment methods which are
related to FSD, but to a lesser degree than the preceding
ones, are described briefly in the remainder of this section.

Higher Order Software (9) is concerned with the problem of

insuring that intermodule linkages are correct. This problem
is one of the key problems in writing modularized programs.

Modularization based on levels of data abstraction (11) is
another approach to the problem of program design. Tts
influence 1is seen in the input-process-output decomposition
used in Structured Design. The major concept is to use
modules which perform input and output and are separate from
the processing module. The input and output modules perform
preprocessing and postprocessing, respectively, so that the
module which performs the principal processing routine is not
affected by details of data formats.

HIPO (16) 1is a method for graphic documentation of the
top-down design of a software system. It uses a set of
b charts, augmented by notes, which show the various levels of

program decomposition based on an input-process-output model.
A graphical index is used to relate the charts to each other.

The wuse of program design languages and requirement
languages (5,8) is another approach to the problem of software
design. Functional specifications are written for each
module. Subseguent phases of the design, development and q
programming process are guided by these specifications and

the results of each phase are checked against these

specifications for completeness and consistency. This ki
g approach is intended to facilitate computer-aided verification
i and validation.

3. Functional Software Development Components

Functional Software Development is a system for the design
and implementation of high-quality software. The major
components of the system are shown in Fig. 2.

e o e e e e e e e

Functional Design (FD) is a method for designing a program
or system of programs using a2 top-down approach. The method
is based on two key concepts: the nested-virtual machine
concept and the matching of orogram structure to data

! structure. Graphical representations of the various program
kS ol levels, called Functional Development Charts (EDC's), are used

FUNCTTONAL QOE‘TWAR“ DEVELOPMENT

PAGE 9
in the problem decomposition. A set of Functional Design
Procedure quide this decomposition. Each FDC consists of
three elements: the Development Graph, Notes, and the

Sequence Graph.

Functional Design can be used by itself to design
high-quality programs but the total software development
process is greatly enhanced by the use of Functional
Programming.

3.2 Functional Programming

Functional Programming (FP) is a method for implementing a
program designed using FD. It greatly simplifies the
programming process and improves the correctness of the
resulting program. The two methods, FD and FP, comprise a

synergistic combination.

Functional Programming consists of a language, celled
Functional gggqggmmlnq Language (FPL), and a processor for it,
called the Functional Language Processor (FLP). The language
consists of three major elements: a basis language which is
an existing language or variant of one, the Data Description
(DAD) which is a unified and comprehensive description of the
program data, and functional functions and notation which
provides for program modularization.

Functional Design is a well developed method which has
been applied to the design of a number of systems. Functional
Programming 1is not nearly as well developed; the basic
requirements have been defined and some preliminarry
consideration has been given to the Functional Language
Processor in terms of its feasibility.

Functional Design is a method for the design of
high-quality software. A body of procedures are used to
create a set of Functional Development charts that are related
to the ultimate program in much the same way that a schematic
diagram is related to a circuit.

4.1 Characteristics and Concepts of Functional Design

The two key concepts which provide the basis for
Functional Design are the nested-virtual machine concept and
the approach wherein program structure is related to data
structure. Functional Design provides a design implementation
of the nested virtual machines as a family of functional
sub-programs. The modularization is detecmined by the data
structures so that the program structure is not only related
to, but is actually determined by, the data structure,

o R e

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 10

Furthermore, the function of the modules are dictated by the
information flow between input 2and output. The term
"data-directed program development" best summarizes the direct
influence of the data structure on the program structure.
Data-directed program development, in addition to providing a
firm basis for program modularization, also guarantees
functional <cohesion of the modules as defined in Structured
Design (17). This is the highest level of module cohesion and
helps to assure a high level of software quality.

Functional Design and Functional Development Charts in
particular, provide the designer with a tool which may be
compared with a zoom camera lens. The designer starts the
top-down design procedure by looking at the overall program
requirements and identifying the major data elements and the
information flow between them. The "lens" is then zoomed in
to take a more detailed look at some aspect of the problem by
unfolding, or defining, the data structure and resulting flow
of informetion in more detail. As a graphical representation
of the top-down decomposition of a system, Software
Development Charts are similar to the charts used in the
Structured Analysis and Design Technique by SofTech Inc. (15)
although the charts are quite different in other respects.
There are also similarities between Functional Development
Charts and the charts used in the HIPO method.(16) Some of the
elements of the HIPO method did motivate the use of
corresponding elements in FSD but the FDC's are quite
different from HIPO charts.

The concept of level of data abstraction (11) has had
impact on Structured Design and various other methods. This
concept is not incorporated in FD but the two are compatible;
FD does not guarantee, nor does it preclude, levels of data
abstraction in programs designed using it.

4.2 Use of Functional Design

FD is intended for use in the very earliest stages of
software developmcnt. The use of requirements languages (8)
to specify what a program is to do sometimes appnears to
encroach upcn the designer's options by specifving how
something is to be done. This is a poor practice because the
earliest design decisions provide the foundation for the
entire design and hence are very critical; if they are made
without adequate consideration they may well prevent the
design of a software product having a gquality level which
could have been realized.

FD provides the designer with the tools to specify a data
structure and associated program to implement given functional

EEpE———— PRSP -

FUNCTTIONAL SOFTWARE DEVELOPMENT
PAGE 11

requirments. The influence of data structure on program
structure makes it desirable to leave the specification of the
data structure to the designer insofar as this is feasible,
Even, when physical data formats are given, the designer can
frequently overlay wvarious concentual structures on them
resulting in programs which are quite different. Experience
has shown that program efficiency is very sensitive to the
conceptual data structuring. The definition of the conceptual
data structure seems to be the most «critical phase of the
design process and the one which is most dependent on the
designer's judgement. This is the activity which should be
given the major wvart of the designer's creative effort; the
rest is almost automatic using FD. Perhaps the most important
characteristic of FD is that it centralizes the important
matters of judgement in the design process into the single
problem of deciding upon a conceptual data structure.

4.3 Overview of Functional Design

The design process, using FD, proceeds through a number of
levels, each level corresponding to one of the nested-virtual
machines. The top level identifies the major data components
and their interaction as a single function corresponding to
the single instruction executed by this virtual machine. Each
subsequent level defines the functions of the preceding level
using a number of sub-functions. Each function of the
preceding level, except those with a terminal definition, is
specified by a Functional Development Chart.

The Functional Development Chart consists of three main
parts. The Development Graph, which is the first part and is
always present, shows the information flow between the data
elements involved in the function. Nodes represent data
elements and directed arcs represent information flow or
processing. The Notes, which 1is the second part, and is
optional, 1is a set of notes which are used to define
abbreviations, to provide information related to what is
shown in the chart, or to provide "terminal definitions" of
some sub-functions, 1i.e., to define sub-functions via
mathematical equations or verbal descriptions. The Sequence
Graph, which is the third and final vart and is also
option2l, shows the sequence in which the processing must
occur .

A Functional Development Chart may be segmented for
purposes of clarity. Two types of segmentation may be used.

Lateral Segmentation is used when a chart is too large to
fit on 2 single page. The chart is then essentially cut
into pieces as a multipage map is cut into pages which

FUNCTIONAL SOFTWARE DEVELNPMENT
PAGE 12

match at the page boundaries. This is illustrated in Fiq.

39.

Overlay Segmentation is wused when a chart has many
- A g, o e R LTI SE SP . . .

crossing arcs which make it difficult to read or draw.
The various segments are made as if they were

transparencies for an overhead projector such that if they
were all overlaid upon one another the projected image
would be the complete chart. Since the segments are not
actually overlaid in this way, it is not essential that
the same element appear in the same location on each slide
but it 1is helpful to keep them in approximately the same
places unless this interferes with the clarity of the
presentation. This type of segmentation is shown in
Fig. 3b.

4.4 Functional Development Chart Elements

The major component of the FDC is the Development Graph.
The three characteristics of a program depicted in the
Development Graph are the data elements, the data structure or
relationships among the data elements, and information flow.

Data Elements

A data element may be a simple scalar guantity, an array,
2 table, or a COBOL or PL/1 type of structure. The data
element may be in main memory where it is accessible to the
arithmetic processing unit or it may be stored on some
peripheral device from which it must be read into main memory
before it can be processed. Different graphic symbols are
used to denote characteristics of the data which are relevant
to its processing.

The storage location of a data element is indicated by use
of a circle or a square. Data which is in main memory is
shown by a circle while data which is stored on a peripheral
device is shown by a square. If a data element consists of
components, some of which are in main memory and some on
peripheral devices, the circle is used. If the designer has
not vyet decided whether the data at a given point will be in
main memory or on peripheral device the circle is used. The
circle is the more general symbol and can be used to represent
data anyplace; the sqguare is used to indicate that data is not
directly accessible to the arithmetic processing unit.

The structural characteristics of a data element is
indicated by the use of a single circle (sguare) or a double
circle (sguare). Scalar elements or data structures which are
not a set of items having identical formats are represented

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 13

by single circles (squares). Arrays, tables, or files of
records having the same formats are represented by double
circles (squares). Structures as used in COBOL or PL/1 are
represented by single circles (squares). The single circle
(square) is the more general symbol and may be used to
represent those elements for which the double circle (square)
may be used. The voarious symbols used to represent data
elements are shown in Fig. 4.

Each data element 1is labelled. The 1label of a data
element becomes the identifier of the data element in the
program. For scalars or structures, the identifier 1is a
simple name (generally chosen so as to have mnemonic value)
subject to the restrictions of the programming language to be
used. For arrays, tables, and files the name is followed by a
pair of parenthesis inside of which is the number of elements,
i.e., dimension information for an array, number of entries in
a table or number of records in a file. TIf any of these
quantities are unspecified, the number sign (#) is wused to
indicate that fact.

Sometimes data elements appear more than once serving
different, but related, functions. For example, a data
element may serve as both input and output, as is typical of a
value which 1is to be updated. 1In such cases the nodes are
labelled with the same name but with a suffix consisting of a
period followed by the integer one, two, three, and so on to
distinquish the different versions (update values). The
initial mode is shown without a suffix.

Information Flow or Processing

The flow of information or data processing is shown by
so0lid directed arcs. Each arc starts at a node and terminates
on a node. FEach node, except an input node, 1is the value
computed by a function subprogram corresponding to an
instruction of one of the nested-virtual machines. All the
arcs terminating on a single node are labelled with the same
name, which is the name of the function, suffixed with a
period and an integer starting with one, then two, and so on.
These integers indicate the positions of the arguments in the
function call as shown in Fig. 5.

In general, information flow is shown from left to right
and numbering is ascending from top to bottom. These
conventions may bc broken for the sake of clarity. When a
chart is segmented, either all or none of the arcs terminating
on a node should be shown on any segment. This prevents the
errotr of showing the same function with different inputs on
different segments.

S

FUNCTTONAL SOFTWARE DEVELDPMENT
PAGE 14

There are occasions when the same invocation of the same

function is shown on more than one functional development
chart. 1In such cases the corresponiing arcs should be
labelled only on the one which is to be evaluated Auring the
program, i.e., the first occurrence. The remaining charts

represent the same call of che function and do not represent
additional processing; they serve only to represent a complete
picture. The designer documents this by not 1labelling these
arcs.

Data Structure
The data structure, or the relationships among data
elements, are shown by broken directed arcs.

The components of a data element are indicated by broken
directed arcs radiating from the "parent” data element to the
components as shown in Fig. 6. The broken directed arcs are
labelled with the integers one, two, three, etc., to indicate
the sequence of components. In general, this numbering is
ascending from top to bottom but this convention may be
ignored for purposes of clarity. When a chart 1is segmented,
either all or none of the components of a data element should
be shown on any segment so as to avoid confusion.

It is cumbersome, and frequently virtually impossible, to
show all the components of an array, table, or file. It is for
this reason that the double circle (square) notation is used.
This notation is augmented by a selection notation which is
indicated by the use of a box. The most common situation is
iterative processing of the elements of an array. Figure 7a
shows the selection of elements A(2), A(4), A(6), ceeee,
A(100) of an array A. Another common case is the selectioon
of a single el2ment from a table based on the result of a
computation. Figure 7b shows the selection of an element TIX)
from 2 table T based on the computed value X. A shorthand
alternative 1is shown in Fig. 7C; this notation may be used
whenever a single element is to be selected. The notation in
Fig. 7b contains a variant on that which has been presented;
the semicircular node 1is associated with an indexing or
selection operation. 1In this case it is labelled T(X) so the
relationship is clear. The shorthand notation of Fig. 7C is
egqually clear; the dotted line represents a selection of an
element from the array T and there is a flow of information
alonqg the solid arc from X to T(X) making the relationship
clear. Furthermore, the solid arc 1is labelled with the
special name SEL (for select) which eliminates any possible
question. The broken arcs in & selection process are not
labelled because there is always just a single such arc. The
arrowheads on the broken arcs where they cross the selection
boxes in Figs. 7a and 7b represent the selection operation.

PRI

OSPU—

DS

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 15

A final application of the broken directed arc is the
decision process, typically shown by a diamond-shaped outline
in a flowchart and implementd by an 1F statement in high-level
languages. The dczision process is characterizedd by a node
with a single solid directed arc and multiple broken directed
arcs terminating on it. The broken arcs are labelled with the
possible values that the node at the beginning of the solid
arc may have; most often these will be the integers one, two,
three, etc. The node at the termination of these arcs is made
equal to the wvalue of the node at the start of the
corresponding broken arc. This process is illustrated in
Fig.8. The label on the solid arc is the special name DEC for
decision.

The approach to the decision process using FSD is somewhat
different from that taken when conventional methods are used.
The situation depicted in Fig. 8 illustrates the difference.
The flowchart in Fig. 8a indicates that one of two values of X
will be computed if I =1 or I = 2 and a value of Y will be
computed if I = 3. This implies that the value of X is
changed and Y 1is 1left unchanged if I =1 or I = 2 and the
value of Y is changed and X is left unchanged if I = 3.

In Fig. 8b the inputs are shown as A,B,X.1, and Y.1l. The
inputs X.1 and Y.l are the values of X and Y, respectively,
prior to the decision box in the flowchart. The values of X1,
X2, and X3 are the three possible values of X after the
decision and related processing while Y1 and Y2 are the two
possible values of Y. The new values after the decision and
related processing are X.2 and Y.2. Two occurrences of each,
separated by an ID (identify) function are shown so there will
not be ambiquity as to whether a dotted line is part of the
decision operation or that it indicates a component of Z. The
node 7 represents the entire output consisting of the two
components X and Y; this single output is required because 32
function subprogram can have only one output. Restricting all
subprograms to function subprograms retains the relationship
between the subprograms and virtual machine instructions which
compute a single result.

A second optional component of the ¥DC 1is the notes
section. It contains a series of sequentially numbered notes
which define abbreviations, briefly describe the intended
purpose of functions used in the chart, define by mathematical
equations or textual description functions used in the chart,
or provide other information such as data formats, type of
data files, etc. The third major component of the FDC is the
Sequence Graph. This optional component is wused to specify
the seguence in which data elements must be processed. When
the sequence of processing operations does not matter, the

i
!
g!

FUNCTTIONAL SOFTWARE DEVELOPMENT
PAGE 16

Sequence Graph may be omitted. Some or all of the nodes that
appear in the Development Graph ave used in the Seguence Graph
together with solid directed arcs which show the sequence of
processing as illustrated in Fig. 9. This graph indicates
that data element D cannot be computed until A and B have been
processed. Furthermore, both D and C must be completely
processed before processing of E can start.

In addition to these three major components, a system of
chart numbering is important in keeping track of the charts.
Each chart 1is identified by a number of the form i.j - k.1
where i,j,k, and 1 each represent unsigned decimal integers.

i represents the 1level of the parent chart, i.e., the
chart in which the function being defined first
appears.

3 identifies the specific parent chart. This value is

omitted if there is only one chart on level i.

k is the level of the chart being prepared. Usually,
but not always, k = i+l.

1 provides unique identification of the chart so as to
differentiate it from the other charts on 1level k.
This wvalue 1is omitted if there is only one chart on
level k.

A graphical index showing the family of charts as a tree
structure 1is wused to relate the charts. 1In addition, an
alphabetical index, by function name, is wused to avoid
multiple definitions. This index indicates all functions
invoked by each function and also contains references to all
functions which invoke the given function. An illustration of
the two indices is given in Fig. 10.

In order to insure that all required functions have been
defined a dollar sign ($) 1is prefixed to each function
invocation wupon completion of its definition. 1ts definition
is complete when a FDC for it is completed or when it is
defined in a note. Certain frequently used functions, such as
GET (input), PUT (output), 1ID (identity or move), SEL
(select), and DEC (decision) are predefined and the dollar
sign 1is included with the function invocation immediately.
when all function invocations in a FDC are defined, the
function name, which follows the chart identification number,
is prefixed by a dollar sign; this indicates that the function
is complete. When all the FDC names are prefixed by dollar
signs the design process is complete.

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 17

The final element in @& FDC is a brief description, usuzlly
a simple single sentence, of the function defined on the
chart. The ability to describe the function of a module by a
simple sentence is one of the tests used to determine whether
a module has functional cohesion(17); incorporating such a
description in the chart verifies that the function defined by
the chart satisfies this criteria. The design process itself
results in functional cohesion since the defined function
computes one data element which, even if it is not a simple
element, is a collection of functionally related elements.
Nevertheless, the function description serves as a useful
check and provides useful documentation. A typical SDC is
shown in Fig.l1l.

Functions defined by FD are called functional functions,
or F~functions, because they are functlonally cohesive. Each
F-function's name begins with a dollar sign (inserted when it
is completely defined); this distinguishes it from ordinary
functions defined during program implementation.

4.5 Functional Design Process

The FD process is one of the stepwise refinement starting
at level 1 for the overrall software system and providing more
and more detailed specificationns of the design on successive
levels.

Each FDC defines a F-function which corresponds to an
instruction for the virtual machine associated with the given
level. The major component of the FDC, the Development Graph,
is created using a three step process:

) The data elements are specified by refining the
definition of the input and output elements shown on
the present chart. This refinement process is one of
the specifying the components of the input and output

elements, generally to one level.

This step may involve only the transfer of
information given in the system requirement
specification to the Development Graph or it may
reguire the designer to develop the data structures.
The development of the data structure by the designer
is probably the most critical aspect of the design
process and the step to be most carefully considered.

2. The information flow is specified by drawing solid
directed arcs indicating the sources of information
required to determine all output quantities.

e e ——

e e g . S 0 g AT

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 18

This step is quite straightforward providing the
designer understands the functional requirements of
the system. Difficulty in this area indicates one of

two problems: either the designer does not
understand the requirements or the designer has
started with a poor data structure. In the former

case, the designer must go back to the requirements
specification which may be found to be incomplete.
Whether it is or not the designer must get the
information necessary to permit completion of the
design.

In the 1latter case, the designer must analyze the
situation to determine the source of the difficulty.
Very often the difficulty is due to a confusion
between the functional requirements and the
procedural approach to the program. The designer
must avoid any consideration of how processing will
be accomplished (procedure); attention should be
given only to the sources of information,
identification of the results to be computed, and
information flow (functional requirements).

If the above consideration does not eliminate the
difficulty it 1is generally due to an incongruity
between the data structure and the approach to the
program design which the designer has in mind. This
situation reguires identification of the source of
conflict followed by a change in the data structure
or the design approach.

An iterative procedure of data structure
specification, specification of information flow,
modification of data structure, etc., is often
required to generate a satisfactory design. This
procedure may require considerable time and thought
but the effort is well spent because this is the
critical design activity. TIf the data structure and
information flow complement each other, the basic
program structure is good and a gquality software
product can be generated; if the data is poorly
structured or does not match the program design, no
amount of effort 1in subsequent stages can generate
anything better than a clumsy and inefficient
program. Once this phase is completed the remaining
design steps are very simple and the programming
procedures are much simpler and faster than they are
when conventional methods are used.

FUNCTIONAL SOFTWARE DEVELOPMENT

PAGE 19

b
e The functions are identified by labelling the solid
directed arcs with function names. The name are

generally chosen to reflect the functional purpose of
the function. A note is freqguently included in the
Notes Section which describes this purpose.

This step 1is the bridge to the procedural aspect of
software development. Tt provides the information
necessary to refine the design on subseguent levels,.
Once a function is defined in this manner it can be
isolated from the overall problem so that the
designer can concentrate on this one part of the
problem which is functionally cohesive module whose
interfacing 1is <clearly defined by the data elements
which are its inputs and output.

5. Design Example

The overall design process is best presented by an
example. The following example does not illustrate the full
power of the method because of its simplicity (for the sake of
brevity) but it does illustrate most of the key features of
the method.

5.1 Specifications

A software system for monitoring matients in a hospital
intensive care unit is to be designed.* A monitoring unit is
located at each bed in the intensive care unit. Transducers
which monitor various physiological factors, such as blood
pressure, heart rate, respiration, temperature, etc., are <
connected to the monitor. The monitor also contains a number
of dials which are used to input the patient's identification
number, safe ranges for each factor being monitored (a high
and low value are set for each factor), and the rate at which
the patient is to be monitored.

g The monitors connect to a centralized computer which is to
check them at intervals according to the monitoring rate
specified for each unit. The measured data for each patient
is to be recorded in the patient's record and an alarm is to
be illuminated at the nurse's station whenever a factor falls
outside the safe range for the patient. There is a separate
alarm light for each factor for each patient.

* The specifications for this example are based
on those used by Myers in his text on composite
design (14).

!
!
!
!

FUNCTIONRL SOFTWARE DEVELDPMENT
PAGE 20

For this example it is assumed that four factors for each
of up to 255 patients can be monitored. The monitoring can be
set from one sccond to one hour in one second steps for each
patient éend the safe range values are set as four
decimal-digit values which are internally stored as
floating-point numbers. The patient identification number is
a nine digit integer. In 2ddition, each monitor has an off-on
switch which is set on when a patient is being monitored and
is otherwise off.

5.2 Dbesign

The Functional Development Charts are developed in this
section. Before doing this the general approach to the
problem is considered. The first problem is finding a method
for monitoring cach patient at the appropriate rate. One
approach is to have a timer in each monitor which interrupts
the computer when it is to be monitored. A more economical
and simpler approach is to have the program cyclically check
all the patients and measure each patient's factors or skip
the measurement depending on whether the monitoring interval
has elapsed or not; this approach 1is the one used in the
system presented. 1In order to minimize the time required to
check whether a patient should be monitored or not, the
monitoring interval and time of last monitoring for each bhed
in the intensive care unit are held in an array in main
memory. The monitoring interval is the input from the monitor
unit. This is input by a separate program which interrupts
the monitoring program whenever this value is changed at any
of the monitor units. A one-bit value which indicates whether
the monitor is on or off is also stored for each bed in the
same area of main memory and this is set by the same program
which sets the monitoring interval. This program is rather
simple and its design is not considered.

The monitoring program is developed using a sequence of
FDC's. The first level in the sequence, shown in Fig. 12, is
straightforward and obvious; it shows the basic data
structure. The circular nodes used for both input and output
indicate that neither of these data elements is purely from or
to a peripheral device; this is due to the array of data used
to control the monitoring which is stored internally.

The input to this program is derived from three separate
sources: the internal array used for controlling the
monitoring, a real-time clock whose output is denotated CLOCK,
and the monitor units. The internal array 1is called INFILE,
the wvalue of the real time clock is assigned to T, and the
monitor inputs are called MONIN. The value of T is assumed to
vary from 0 to 24 X 60 X 60 - 1 = 86399 (= number of seconds

K

-

FUNCTTIONAL SOFTWARE DEVELOPMENT
PAGE 21

in day minus one). At the end of each day it resets to =zero
and increments by one ecach second. WNote that MONIN is shown
as a square node to indicate that it is located on peripheral
devices. The developement of the input is shown in the second
level FDC in Figure 13. At this point no development of the
output is shown because that is a seperate problem.

The development of the data structure shown in Fig. 13 is
the first step of the three-step chart development process.
The numbering of the components is arbitrary, but it is often
helpful to have the numbers agree with the sequence in which
the data components are used.

The second step in the process is to draw solid directed
arcs representing information flow. There is such an arc from
each input component to the output because information from
each of the components is required to determine the output.

The third and final step in the chart development process
is the 1labelling of the arcs introduced in the second step.
All the arcs terminating on a single node correspond to one
functional operation and are therefore labelled with the same
function name followed by a period and different integer
suffixes starting with one. The name chosen in this case is
MONITOR since the function 1is performing a monitoring
operation. The assignment of the suffix values 1, 2, and 3 is
arbitrary but it 1is generally a good practice to have these
numbers correspond with the seguence in which the inputs are
used in the function.

: When the FDC for PROGRAM is complete, as it is now, a
{ dollar sign ($) should be prefixed to its invocation in the
first 1level FDC of Fig. 12. When that is done, all functions
invoked by MAIN will have been defined and a dollar sign
should be prefixed to the function title MAIN in Fig. 11. This
indicates that all of the fuctions it invokes are defined.
The result is the revised top level chart shown in Fig. 14.

The next step in the design process displays the cyclical
checking of each patient to determine whether or not the
patients factors should be measured. At this ooint the
designer considers the data in greater detail. The internal
data, INFILE, is an array with an entry for each bed in the
intensive~-care unit. The monitor inputs are a set of input
devices, one for each bed in the unit. For purposes of
design, these devices are treated as entries of an array. 1In
the final implementation it may be necessary to oprovide a
routine that selects the appropriate monitor device, but this
need not be of concern at this point. The final consideraticn
in the data development step is the output which must also be

S a——

b
§

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 22

considered as an array of elements, one for each bed. The

selection of each bed in sequence 1is accomplished by an
iterative loop shown by a box in the FDC. The partial FDC at
the end of this first (data development) step is shown in Fig.

15. The new data elements are defined in the NOTES section of
the chart.

The second step in the chart development process is that
of adding the arcs which represent information flow. This
step may also include the addition of internal nodes required
for the computation of the chart output. 1In this example, the
internal data and real-time clock output are compared and a
decision is made as to whether the patient's factors should be
measured or not. This is developed by calculating a
monitoring decision value, MD, whose value is 0 if the monitor
is off or it is not yet time to measure the patient's factors,
or 1 if the patient's factors are to measured. This value is
used to select the output value NOP (no operation) or the
monitored output.

The inputs to MD are from INREC, the internal data for the
patient, and T, the real-time clock output. MD is used to
decide whether the output for the patient, OUT, is set to NOP
or a new value computed from T and the patient's monitor
input, MIN.

The third step provides the function labels: CH 1is the
function that checks whether the patient's factors should be
measured, MTR actually verforms the monitoring operation if it
is required, and $DEC is a predefined decision function. Note
that the output of MTR is not 1labelled. This 1is because
OUT(N) 1is assigned this value if MD = 1. The other possible
value for OUT(N) is labelled NOP which is not actually a value
but an indication that no operation is performed. The
completed chart 1is shown in Fig. 16. The arrowheads at the
boundary of the iteration box associated with INREC, MIN, and
OUT represent the selection process by means of which the Nth
elements of the arrays of NB elements are selected. The
iteration box is 1labelled to indicate that N takes on all
values fiom 1 to NB.

The seqguence graph at the bottom of the chart indicates
that ™MD must be computed before OUTPUT can be computed. Tt
also indicates that INFILE and T must be available for the
computation of MD and MONIN must be available for the
computation of OUTPUT. Not all data elements are shown in the
sequence graph; only those which are necessary to specify the
order of those computations which must be done in a specific
sequence are included.

i 4

FUNCT IONAL SOFTWARE DEVELOPMENT
PAGE 23

At this point the development of chart 2-3 MONITOR is
complete. The designer should return to chart 1-2, Fig. 13,
and prefix all the invocations of MONITOR with dollar signs
and, since those are all the function invocations in chart
1-2, a dollar sign should be prefixed to the chart title,
PROGRAM. This indicates that the chart is finalized and all
functions it invokes have been defined.

The fourth level of the program development is shown by
two charts, one for the function CH and the other for the
function MTR. The development process has isolated these two
functional entities from each other so the designer can
consider each one separately with no worry about their
interaction, all of which 1is accounted for by the data
elements which they share.

The development of the function CH which checks whether
monitoring is necessary is attended to first. From chart 2-3,
Fig. 16, it is found that CH has two inputs, INREC(N) and T,
and one output, MD. The first step in the chart development
process is the data development process. Three guantities are
stored in the internal record for each patient: (1) an
activity indicator, ACT, which indicates whether the monitor
is off (ACT = 0) or on (ACT = 1); (2) an interval value, INT,
which is the desired monitoring interval in seconds from 1 to
3600, and (3) the time of the 1last measurement of the
patient's factors. T is the time in seconds and MD is a one
bit value which is 0 if the patient is not to be monitored and
1 if the patient is to be monitored.

The algorithm for computing MD is chosen so as to take as
little time as possible since it is performed each time the
bed is checked. The FDC is shown in Fig. 17. The activity
indicator ACT is checked first; if the monitor 1is off the
check 1is complete, otherwise the time interval from the last
monitoring time to the present, TI, is calculated and compared
with the monitoring interval, INT, to evaluate MD.

The function TD is used to calculate the time interval TI.
It is defined in the NOTES section wusing PL/1 1like program
statements rather than in a separate FDC; for this reason it
is called a terminal function and its invocations are shown
with dollar sign prefixes in the development graph. The
function TCH is used to calculate the value of MD if ACT = 1.
It is defined in the NOTES section and is therefore a terminal
function whose invocations are prefixed by dollar signs. The
output of TCH is not labelled since it is assigned to MD when
it is computed. The other possible value of MD is the
constant 0 as shown in Fig. 17.

.

]
:
:
i

-

FUNCTIONAL SOFTWARE DEVELOPMENT

PAGE 24

The sequence graph shows that INREC must be available in
order to start. The first node shown after that is ACT which
is a component of INREC, rather than a computed value, and
therefore available from the start. The reason for this is to
indicate that ACT is checked before invoking TD and TCH; if
ACT = 0 the other functions are not invoked at all. The

computation of TI and final evaluation of MD shown in the
sequence graph occur only if ACT = 1.

The <¢hart title CH is prefixed by a dollar sign because
all the functions it 1invokes are shown with dollar sign
prefixes. At this point the designer turns back to chart 2--3,
Fig. 16, and prefixes the two occurrences of CH by dollar
signs. In order to completely finalize <chart 2-3 it is
necessary to define the function MTR.

The Jdefinition of MTR is shown in Chart 3-4.2 in Fig. 18,
This function measurecs and processes the patient's factors.
Its inputs are T and MIN(N) and its output 1is OUT(N) as can
be seen in Chart 2-3, Fig. 16.

The first step in developing the chart is the data
development step. T is a simple scalar quantity. MIN 1is the
input from the monitor device. The first requirement is to
transfer MIN into main memory; this is done wusing the
predefined function S$GET. This data consists of three major
components: the patient identification number, PN, set on
monitor dials; the factors, FRS, measured by the transducers
connected between the patient and monitoring wunit; and the
safe ranges on these factors, RNGS, set on monitor dials. The
factors must be converted from analog to digital form; this
may be done by individual analog-to-digital converters in the
monitor units or by a single unit at the computer input. This
detail is not of consequence at this point in the design. The
output data for the patient consists of three main components:
(1) an updated value of the monitcring time, TM, contained in
INREC; (2) recorded values of the measured factors and the
time of their measurement in the patients file, PFIL; and (3)
tne alarm output at the nurses' desk, ALM. The updated
monitoring time is labelled ™.1 to differentitate it from TM
which is part of TINREC while at the same time indicating that
both identifiers reference the same value. This is handled by
a COMMON block in FORTRAN or a DEFINED attribute in PL/1. 1Tn
a similar manner, the patients file is labelled PFIL.1. The
original PPFIL 1is not shown in any of the FDC's but is
implicit. The reason for this is that OUT(N), and all of its
components, can be any of 255 different data elements whereas
the patients file is a single file with subfiles for all of
the opatients. The changing of patients in the intensive care
unit prevents a fixed relationship between bed number and

o ——— e s —

g i

e e 1 L T

FUNCTIONAL SOFTWARE DEVELOPMENT

PAGE 25
patient number. As a result, the patient number must be

dialed into the monitor unit and this must be used to select
the appropriate patient subfile., 1In order to have all of the
patient Ffile referencas access the same patient file, they are
each 1abhc 153 PFIL.1 and all of these are caused to reference
the same value as PFIL.

The function $MOV is predefined and simple. Tt causes the
value of its input to be assigned to its output. The function
SRC selects the proper patient subfile using PN and records
the time and measured factors. The function ALARM checks each
factor to determine whether it falls inside or outside of the
safe range and outputs an alarm signal if it is outside the
range. Each alarm signal activates a different lamp on a
panel at the nurses' desk. The predefined function $PUT
transfers data to a peripheral device.

The development of the SRC function is shown in Chart
4.2-5.1, Fig 19. The value of PN is used to select the proper
file PFIL which is an array of subfiles whose dimension is not
specified and is therefore indicated by the number sign (%).
The predefined function $ID implies that its input and output
reference the same values; in this case the same identifier is
used and the function S$ID 1is wused to show that the input
element is used for indexing. 1TIn other cases S$ID may be used
to cause a COMMON (FORTRAN) or DEFINED. (PL/1) type of
relationship to be set up between identifiers. The function
RCD is5 developed in Fig. 20. In this chart $ID is used to
cause TR to reference T and FR to reference FRS. The
identifiers T and FRS cannot be used directly because they are
components of data elements other than PREC (PN) and the same
identifier used in different structures do not reference the
same values.

The one function remaining to be defined is ALARM which is
invoked in Chart 3-4.2, Fig. 18. The development of this
function is shown in Chart 4.2-5.2, Fig. 21. 1In Fig. 18 the
inputs are seen to be FRS and RNGS and the output is ALM. 1In
order to compare the factors and ranges it is necessary to
select each factor in succession and check it against the
range values for it. This is shown by the iteration box in
Fig. 21. The NOTES section defines the new identifiers. The
function FA performs the comparison of a given factor with the
range values. 1Its development is shown in Chart 5.2-6.2, Fig.
22. 1In this chart the range data element, RIN, is developed
as a high value, RH, and a low value, RL. The function CA
which computes the alarm is a terminal function, i.e., it is
defined in a note in the NOTES section of the chart.

R ————

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 26

The Functional Design of the patient monitoring system is
complete. All the invoked and defined function names would be
prefixed by dollar signs at this point if the designer
attended to this function wupon completion of each FDC. A
review of the charts shows the stepwise refine- ment of the
design and the segmentation of the program into distinct
functional modules.

The presentation of a completed work . cannot show the
thinking that went into it. The data structures used here
seem the most obvious ones to use but this is only because the
design is complete and everything fits. The data structure is
not as obvious when one sits down to tackle a new problem.
Some appreciation of this may be had by considering the output
of the program. The most obvious data structure to use is the
physical data structure. For this program that would imply
the structure shown in Fig. 23. The structure shown in Fig.
23 would appear over a number of levels of FDC's if it were
used as the basis for the program design; it is different from
but no more complex than the one used. The problem with using
it is that the program design will not work out neatly. The
designer's creativity becomes important in developing a
suitable data structure which can be overlaid on the existing
vhysical data structure and which permits the development of a
well structured program. The Functional Design method 1is a
great aid in this process because (1) it provides a means of
breaking a large problem into a series of smaller steps, (2)
it isolates functional modules so that the designer's
attention can be concentrated on one part of the problem at a
time, and (3) it provides a visual picture of the design which
permits the designer to easily sense whether the design is
good or not. A mess of crossing lines is an immediate signal
that there is a problem. If, on the other hand, the designer
ends up with a series of relatively simple, easy to follow
FDC's then the design 1is undoubtedly a good one. All that
remains then is implementation of the design as a program.

6. Functional Programming

It is possible to write a program from a set of FDC's
using existing languages but many of the benefits of the
method are lost. Specifically, it is not possible to write a
subprogram for each FDC and combine these into a program. The
reason for this 1is the lack of a facility in existing
languages for dealing with the data structures represented by
the broken directed arcs in the FDC's.

The Functional Programming Language (FPL) is designed to
provide this capability. This Tanguage has not yet been
implemented nor has a processor been developed for it. At

o

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 27

this point the general requirements have been formulted and an
algorithm for processing it has been worked out in sufficient
detail to demonstrate the feasibility of using such a
language. With the use of such a langquiage it is possible to
write a subprogram, called a functional-function, for each FDC
using very sinple procedures which should result in programs
with high coirectness quality scores. The programming
procedures are sufficiently straightforward that it should be
possible to generate much of the code by computer, A very
important advantage of Functional Programming is that
intermodule lirkages are automatically taken care of thus
eliminating a major source of errors in programming.

6.1 Functional Programming Lanquage Elenents

The Functional Programming Language (FPL) consists of
three main elements: (1) a basis 1language; (2) a data
description facility; and (3) functional-functions and
associated argument notation.

Basis Language

The basic language is an existing high-level compiler
language. PL/1 appears to be the best choice in terms of
providing the facilities required for Functional Programming
but other languages could be used instead.

Data Description Facility

The Data Description (DADR) 1is a statement in FPL which
provides a comprehensive description of all the data involved
in a program whether internal or external to main memory. It
contains the attributes of the data as well as the
relationships among the data elements as defined by the FDC's.
The DAD statement is similar to a ccmbination of a PL/1
DECLARE statement and a COBOL DATA DIVISION.

Functional-functions and Argument Notation

Functional functions (F-functions) are functions which are
derived from the FDC's. They differ from ordinary functions
by the way in which arguments are handled. An argument
notation, similar to that wused in the Xerox Sigma series
Metalanguage macro system (18), is wused in writing the
definitions of F-functions.

The problem in handling the arguments of F-function is
that it is necessary to reference components of the arguments.

This is solved by referencing each argument by its ordinal
position and using a notation similar to the qualification

iR P b

i
§
#
8
2
i
g
3

FUNCTIONZ I, SOFTWARE DEVELOPMENT
PAGE 28

notation used with PL/1 structures to reference the
components.

6.2 Writing a Functional Program

The FPL syntax and semantics is rot presented in detail
because the language is not yet fully defined. Instead, a
program for the patient monitoring system designed in section
5 1is written with commentary on the program and its
preparation. The language used 1is an augmented PL/1 and
should be understandable to most readers with knowledge of a
high-level language. For those unfemiliar with PL/1 the
following notes will be of help in following the programs:

1. It is a free format language; statements can start and end
anywhere.

2. Statements are terminated by semicolons (;).

3. 1Identifiers begin with a letter of the extended alphabet
(A-Z2$#@) and consist of any number of these letters,the
digits 0-9, and the underline (_) character.

4, Statements may be identified by a 1label which 1is any
identifier followed by a colon (:) to separate it from the
remainder of the statement.

5. Comments are bracketed by the symbols /* and */. They may
be inserted anyplace that a blank is permitted.

Main Program

The main program begins with a procedure statement which
specifies the name of the program (MAIN) and .the fact that it
is a main program; this statement .is. a standard PL/1
statement. This is followed by a comment ' which describe the
program. The Data Description statement follows. This
statement is quite lengthy and normally accounts for the major
part of the program. The next statement 1is the statement
which performs all the work of the program; it is directly
derived from the top-level FDC The last statement is an END
statement which identifies the end of the program.

The DAD statement includes the attributes of all the
identifiers used in the program, except those which are 1local
to F-functions, and the formats of external values. The DAD
also represents the structure of the data elements. The DAD
statement required to represent the data structure of Fig. 24a
is shown in Fig. 24b. The DAD statement 1in Fig. 24 is
incomplete in that the attributes are not included; it shows

RS AR 0 AR M

g

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 29

only the structure. Normally, the structure shown in Fig. 24a
would require three levels of FDC charts.

The program listing for the main program is shown below.
It is necessary to trace through all the FDC's to follow the
DAD statement. Some of the attributes of the identifiers may
not be clear to those not familiar with PL/1 but they are not
very important. for purposes of this paper. Not a3ll the
information required to determine all the attributes and
formats was given previously but they should be understandable
to one versed in PL/1l.

SMAIN: PROC OPTIONS (MAIN);
/* PATIENT MONITORING SYSTEM */
DAD
Y1 INPUT;
2.1 INFILE INT,
3.1 INREC(NB),
4.1 ACT FIXED BIN (1) INIT (O0),
4,2 INT FIXED BIN (12),
4.3 TM FIXED BIN (17) INIT (86399),
2 T INT DEF (CLOCK),
3 MONIN EXT,
3.1 MIN(NB) FILE (MONITOR),
4.1 PN FIXED DEC (9),

2.
2

.

4.2 FRS,
5.1 FIN(NF) FLOAT BIN (24),
4.3 RNGS,

5.1 RIN(NF),
6.1 RH FLOAT BIN (24),
1.2 ouTpPUT,
2.1 OUT(NB),
3.1 TM.l1 DEF TM,
3.2 PFIL.1 DEF PFIL,
3.3 ALM FILE (ALARM)
FORMAT ((4)B(1)),
1.3 PFIL EXT,
2.1 PREC (#) FILE PATFILE
FORMAT (F(5),(4)F(6)),
3.1 TR DEF T,
3.2 FR DEF FRS,
.4 NB FIXED BIN (8) INIT (255),
.5 N FIXED BIN (8),
.6 TI FIXED BIN (18),
.7 NF FIXED BIN (3) INIT (4),
.8 M FIXED BIN (3):
OUTPUT = $PROGRAM (INPUT):
END S$MAIN;

(S -

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 30

_'. SR s

The statement
OUTPUT = SPROGRAM (IN?UT);

is a direct treénslation of the Developm:nt Graph of chart 0-1.
The DAD statement contains all of the following information:
(1) data structure; (2) attributes of internal values: (3)
formats of external wvalues; and (4) files from and to which
input and output are transferred.

Differences between standard PL/1 and FPL as used in this
example are:

(1) There 1is no DAD in PL/1. Elements of the DECLARE
statement and FORMAT lists are combined in the DAD
together with wvarious other items, e.g., the FILE
term.

(2) Identifiers followed by a period and then a decimal
integer are used in FPL but not in PL/1.

(3) The number sign for an unspecified array dimension is
not part of PL/1.

(4) The EXT and INT attributes are used differently in
PL/1.

(5) Variable array dimensions are not used in a PL/1 main _
program. 4

Functional-functions

v The remainder of the program is implemented by a set of

: F~-functions, one for each FDC and one for each terminal
function. Each F-function starts with a procedure statement
similar in format and function to the procedure statement for
the main program . The differences are the change in function

! name and the OPTIONS (FFUN) which causes it not to be a
standard PL/1 statement. The next statement is a comment
statement containing the function's description from the FDC.
The next statements are the statements which implement the
program and the last statement is an END statement.

SRR (AR AN g

The statements which implement the program use the

i argument notation. This notation uses integer values preceded
: by a dollar sign to represent each of the function arguments
and zero preceded by a dollar sign to represent the function

output. The first input argument is represented by the

integer one, the second by two, and so on. The order of the

arguments is set by the integer suffixes appended to the

D

FUNCTIONPL SOFTWARE DEVELOPMENT
PAGE 31

function name when it is invoked. An example is shown in Fig.
25. Part of a FDC is shown in Fig. 25& while the argument
notation is listed in Fig. 25b.

The components of an argument are referenced by an
extension of this notation. An argument component is
specified by a dollar sign, the argument integer, as described
above, followed by a period and a integer specifying the
component as shown on the dotted line connecting the component
to the argument. An example of this 1is shown in Fig. 26a
which 1is the next level for the chart segment shown in Fig.
25a. The operator notation is listed in Fig. 26b.

The program listings for the F-function definitions are
given below wusing the argument notation described above. The
handling of DO loops is the usual PL/1 technique; the 1loop
starts with a DO statement and is terminated with an END
statement. Decision operations are handled using standard
PL/1 IF-THEN-ELSE statements.

$PROGRAM: PROC OPTIONS (FFUN);
/* MONITORS INTENSIVE-CARE PATIENTS */
$0=$MONITOR ($1.1, $1.2, $1.3);
END $PROGRAM;

SMONITOR: PROC OPTIONS (FFUN);

/* CONTROLS PATIENT MONITORING */

DAD MD FIXED BIN (1);

DO N =1 TO NB;

MD = SCH(S$1.1(N),$2);

IF MD = 1 THEN DO;
$0.1(N) = SMTR($2,$3.1(N));
END;

END;

END SMONITOR;

$CH: PROC OPTIONS (FFUN):
/* CHECKS MONITOR PERIOD */
IF $1.1 = 0 THEN $0 =0;
ELSE DO;

TI = $TD ($2,$1.3);
$0 = S$STCH (TI, $1.2);
END;

END $CH;

$TD: PROC OPTIONS (FFUN);
/* COMPUTES TIME DURATION */
$0 = S1 - $2;
IF $0 <= 0 THEN $0 = $0 + 86400;
END $TD;

————— e S

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 32

$TCH: PROC OPTIONS (FFUN);

SMTR:

$SRC:

$RCD:

SALARM:

S$SFA:

$CA:

/* CHECKS TIME */

IF $1 >= $2 THEN $0 = 1;
ELSE $0 = 0;

END $TCH;

PROC OPTIONS (FFUN);

/* MONITORS PATIENT */

$GET ($2);

$0.1 = $MOV ($1);

$0.2 $§SRC ($2.1, $1, $2.2);
$0.3 SALARM($2.2, $2.3);
SPUT ($0.3):

END S$MTR;

PROC OPTIONS (FFUN);
/* SELECTS PATIENT SUBFILE AND RECORDS
FACTORS */
DAD
1 POUT,
2.1 TR DEF T,
2.2 FR DEF FRS;
POUT = $RCD ($2,$3);
CALL OUTPUT ($1,POUT);
END $SRC;

PROC OPTIONS (FFUN);
/* RECORDS FACTORS AND TIME */
END $RCD;

PROC OPTIONS (FFUN);

/* COMPUTES PATIENT ALARM OUTPUT */
DO M =1 TO NF;

$0.1(M) = SFA(S1.1(M), $2.1(M));
END;

END S$ALARM;

PROC OPTIONS (FFUN);

/* COMPUTES FACTOR ALARM */
$0 = $CA(S$1,52.1,82.2);

END $FA;

PROC OPTIONS (FFUN);

/* COMPUTES ALARM */

IF $2.3 <= $1 AND $1 <= $2
THEN $0=0; ELSE $0=1;

END $CA;

R it

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 33

These F-functions complete the program implementation.
The definition of $RCD is incomplete because it depends on the
nature of the peripheral device and the file structure which
have not been specified. The scparate functions make program
maintenance very simple because most changes require
modification of a limited number of functions without
affecting the r1emaining functions.

The brevity of the functions and their direct relationship
to the FCD's makes the programming process a very simple one.
Its simplicity makes it less prone to errors than
conventional programming is.

7. Functional Language Processor

A Fuctional Language Processor (FLP) is necessary to
process programs written in FPL. The FLP may be implemented
as a compiler which translates FPL source language into
machine 1language. This tends to be the most efficient
technique but it is also the most expensive approach. A
somewhat less efficient but simpler and less costly method is
to use a preprocessor which translates FPL into the basis
language which is then translated into machine langquage by an
existing compiler. The latter approach is the one used here.

The major function of the preprocessor is to combine the
main program and F-~functions into a single program with the
argument notation replaced by the appropriate variables. The
processor is able to make these substitutions by referencing -
the DAD statement. The processor must also substitute |
standard PL/1 input and output statements for the FPL $GET and
$PUT statements and it must generate DECLARE statements from
the DAD statement.

3
i
i

The processor replaces the argument notation by referring
back to the DAD statement to find the component of the
arguments. The arguments of each function processed are
actual arguments determined by processing the function at the
preceding level. Using the format and file information in the
DAD statement the procesor is able to generate the required
input and output statements. The program generated for this
example uses some non-standard file notation which is a result
of the program requirements, not the wuse of FSD. The
DECLARE statement is also generated from data in the DAD
statement.

Identifiers containing a period and integer suffix are not
valid PL/1 identifiers. The processor replaces the period by
a dollar sign thus creating valid PL/1 identifiers. To avoid
problems, it is necessary that no FPL identifiers end with a
dollar sign followed by integers.

3
£
¢
§
»
:

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 34

The processed program showing F-function invocations,
marked with plus (+) sign and having no affect on program
operation, is shown below.

SMAIN: PROC OPTIONS (MATIN);
DCL N FIXED BTN (8), NB FIXED BIN (8) INIT (255), MD
FIXED BIN (1) TI FIXED BIN (18), T FIXED BIN (17)
DEF CLOCK, M FIXED BIN (3), NF FIXED BIN (3) :
INIT (4),
1 INREC (255),
2 ACT FIXED BIN (1) INIT (0},
2 INT FIXED BIN (12),
2 ™ FIXED BIN (17),
1 MIN (255),
2 PN FIXED DEC (9),
2 FRS,
3 FIN (4) FLOAT BIN (24),
2 RNGS,
3 RIN (4),
4 RH FLOAT BIN (24),
4 RL FLOAT BIN (24),
1 oUT (255),
2 TMS1 FIXED BIN (17) DEF TM,
2 ALM,
3 A(4) FIXED BIN (1),
1 pouUT,
2 TR DEF T,
2 FR DEF FRS;
$PROGRAM (INPUT);
+OUTPUT = $MONITOR (INFILE, T, MONIN);
DO N 1 TO NB;
4MD = $CH (INREC(N), T)
IF INREC(N).ACT = 0 THEN MD = 0;
ELSE DO;
+TI=$TD (T,INREC(N).TM);
TI=T-INREC (N) .TM:
IF TI <= 0 THEN TI = TI + 86400;
+MD=$TCH (TI,INREC (N).INT);
IF TI >= INREC(N).INT THEN MD = 1;
ELSE MD = 0;
END;
IF MD = 1 THEN DO;
i +0UT (N) =$MTR (T,MIN(N));
GET FILE (MONITOR(N)) EDIT (MIN(N)) (F(9),
(12)F(6)); OUT(N).TMS$1 = T;
4+0UT (N) .PFILS1 = $SRC (MIN(N).PN, T,
MIN (N) .FRS);
+POUT = SRCD (T, MIN(N).FRS);
CALL OUTPUT (MIN(N).PN,POUT);
+0UT (N) .ALM = SALARM (MIN(N).FRS,

+0UTPUT

WO AR R

END;
END

FUNCTIONAL SOFTWARLE

MIN (N) .RNGS) ;
DO M =1 TO NF;
+0UT (N) .ALM.A (M) =

SFA

DEVELOPMENT
PAGE 35

(MIN(N) .FRS.FIN (M),
MIN (V) .RNGS.RiN (M)) ;

+0OUT (N) .ALM.A (M) =

SCA

(MIN(N) .FRS.FIN (M),
MIN (N) .RNGS.RIN (M) .RH,
MIN (N) ,RNGS.RIN (M) .RL) ;
IF MIN(N) .RNGS.RIN (M) .RL
<= MIN (N).FRS.FIN(M)
AND MIN (N).*RS.FIN (M)
<= MIN (N) .RNGS.RIN (M) .RH

THEN OUT (N) .ALM.A (M)
ELSE OUT (N) .ALM.A (M)

END;

03
L

PUT FILE (ALARM) EDIT (GUT{N).ALM) ((4)B(1));

END;

SMAIN;

The PL/1 program, with the F-functions

eliminated,

follows:

$MAIN: PROC OPTIONS (MAIN);

DCL

N FIXED BIN(8), NB FIXED BIN (8)

INIT (4),
1 INREC(255),
2 ACT-FIXED BIN (1) INIT (O0),
2 INT FIXED BIN (12),
2 TM FIXED“BIN (17),
1 MIN (255),
2 PN FIXED DEC 19), -~
2 FRS, g
3 FIN (4) FLOAT BIN-(24),
4 RHH FLOAT BIN (24)y
4 RL FLOAT BIN (24),
1 OUT (255), ‘
2 TM$1 FIXED BIN (17) DEF TM,
2 ALM,
3 A (4) FIXED BIN (1),
1 pouT,
2 TR DEF T,
2 FR DEF FRS;
DO N = 1 TO NB;

invocations

INIT (255), MD
- FIXED BIN(1l), TI FIXED BIN (18), T FIXED BIN (17)
DEF CLOCK, M FIXED BIN (3), NF FIXED BIN (3)

IF INREC(N) .ACT = 0 THEN MD = 0;

ELSE DO;
TI = T - INREC(N).TM;

D

PR AR G RS

e R YU W

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 36

IF TI <= 0 THEN TI = TI + 86400;
IF TI > INREC(N).INT THEN MD = 1;
ELSE MD = 0;
END;
IF MD = 1 THEN DO;
GET FILE (MONITOR(N)) EDIT
(MIN (N)) (F(9),(12)F(6));
OUT (N) .TMS1 = T;
CALL OUTPUT (MIN(N).FRS,
MIN (N) .RNGS) ;
DO'M =1 20 NF;
IF MIN(N) .RNGS.RIN (M) .RL <=
MIN (N) .FRS.FIN (M) AND
MIN (N) .FRS.FIN (M) <=
MIN (N) .RNGS.RIN (M) .RH
THEN OUT (N) .ALM.A (M)
ELSE OUT(N) .ALM.A (M)
END;
PUT FILE (ALARM) EDIT
(CUT (N) .ALM) ((4)B(1));
END;

nn
- o
~e ~o

END;
END S$MATIN;

The final program is a single PL/1 program using one
subroutine for outputting the patient data. This subroutine
must find the proper storage area on the peripheral device,
most likely a disk, and place the data after the previously
stored data. The details of this subroutine are not presented
in this paper.

The elimination of the F~functions by the processor
results in a short and simple program with no overhead for
function invocation. Statements can be tagged to indicate the
F-fuctions from which they come; this could be quite useful
for debugging purposes.

Maintenance is done on the initial source program which
must then be reprocessed before execution. sfuch of the
improved maintainability associated with FSD is not present in
the processed program.

The relative simplicity of the final program is result of
the significant design effort expended on the program using
FSD.

8. Conclusions

—— - e o A ————————

E
i
2

FUNCTTONAL SOFTWARE DEVELOPMENT
PAGE 37

The use of FSD reduces the software design process to one
of finding or designing a suitable conceptual data structure.
Once this 1is done the rest of the design process is quite
simple. The graphical approach facilitates design by humans
because there is an appeal to the human ability to grasm the
gestalt, or overall pattern, of the problem.

Among the advantages of FSD are the following:

(1) FSD provides the designer with a design procedure which
concentrates the designer's efforts on the development of
a conceptual data structure. The balance of the design
procedure is quite straightforward and simple.

(2) The source program designed using FSD consists of a set of
modules each of which has, according to Constantine's
definitions, functional cohesiveness which is the highest
and most desirable level of binding of the elements within
a module.

(3) The coupling of the modules is very loose, another highly
desirable attribute according to Constantine. Moreover,
the linkages between modules are all contained in the data
structure and are automatically taken <care of by the
Functional Language Processor. This eliminatess a major
source of errors in the programming and design processes.

(4) The Functional Development Charts provide quantitative
measures, 1i.e., number of nodes, number of branches,
number of charts, etc., of program complexity which can be
used to estimate programming effort and cost.

(5) The definition of functions as instructions for nested
virtual machines increases code reusability which results
in enhanced programming efficiency and reliability.

(6) The simplicity of the graphics coupled with the control
mechanisms for checking completeness facilitates the use
of computerized support in the tasks of verification and
validation, librarianship, and automatic programming.

(7) The method has the general advantages associatded with
top-down methods such as simplified testing and
suitability for chief programmer team management.

Perhaps the most significant feature of FSD is the vast
improvement in software maintainability obtained with its use.
The structure of a program as a set of nested,
functionally~-cohesive, loosely-coupled modules make it
possible to alter the single module which implements a

e —

I i A SRR T

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 38

function which 1is to be changed. The documentation, in the
form of Functicnal Development Charts and source 1listings of
the F-functions, makes it quite simple to locate the precise
point which must be changed. The isolation of data structure
and format specifications in Data Description statements, the
independence of the F~functions, and the automatic processing
of module 1linkages make implementation of the change very
simple and economical.

The Functional Design method is fairly well developed.
While application of the method to new problems will
undoubtedly uncover areas for improvement, there 1is at this
time a comprehensive documented procedure for the design
phase. The major area for additional work 1is that of data
structures; an attempt to find general structures or methods
for deriving structures which can be applied to a wide variety
of problem types.

The development of the Functional Programming Language and
a processor for it is the next major project required to
complete the Functional Software Development methodology. The
feasibility of these components has been demonstrated but a
substantial effort is necessary for their implementation.

11.

12.

FUNCTTONLL SOFTWARE DEVELOPMENT
PAGE 39

References

Baker, F.7. "Chief Programmer Team Management of
Production Programming", IBM Systems Journal, V 11 n 1,
January 1972,

Bates, D. (Ed) Structured Programming, Infotech State of

the Art Report, Berkshire, England, 1976.

Beam, W. R. "Microprocessors and Defense Systems", AGARD
Lecture Series No.87, Micropracessors and Their
Applications, Griffiss AFB NY 13441, 14 April 1977.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod,
G. S., Merritt, N. J. "Characteristics of Software
Quality", Doc. TRW 25201-6001-RU-00, NBS Contract
#3-36012, 28 December 1973.

Caine, S. H. and Gordon, E. K. "PDL - A Tool for Software
Design", National Computer Conference, 1975.

Dijkstra, E. W. "Goto Statement Considered Harmful",
Communications of the ACM, V 11, March 1968.

Drossman, M. M. "Software Quality", Technical Report
submitted to Rome Air Development Center, May 1977.

Eiden, H. J. and Moore, C. R. User Requirements Language
(URL) Users Manual, Information Systems Technology

Applications Office, Hanscom AFB, MA 01731, 1975.

Hamilton, M. and Zeldin, S "Integrated Software
Development System/Higher Order Software Conceptual
Description (Version)%, Research and Devlopment
Technical Report ECOM-76-0329-F, November 1976.

Jackson, M. "Data Structure &as a Basis for Program
Design", Structured Programming, Infotech State of the Art
Report, Berkshire, England, 1976.

Liskov, B. H, and Zilles, S. N. "Specification Techniques
for Data Abstraction" IEEE Transactions on Software
Engineering VSE-1 n 1, March 1975.

McCall, J. A., Richards, P. K., Walters, G. F. "Factors in
Software Quality”, Preliminary 1Interim Technical Report
No. 1, RADC Contract No. F030602-76-C-0417, October 1976.

ECL Y IR (W TS

3
%
3
:
&
i

TR s

13.

14.

LSS

16.

17.

18.

19.

FUNCTTIONAL SOFTWARE DEVELOPMENT
PAGE 40

McCall, J. A., Richards, P, XK., Walters, G. F. "Factors in
Software Quality", Preliminary Interim Technical Report
No. 2, RADC Contract No. F030602-76-C-0417, January 1977.

Myers, G. 7j. Reliable Software Through Composite Design,
First Edition, Petrocelli Charter, New York, 1975,

SofTech, Inc. An Tntroduutlon to SADT Structured Ana]quq

and Des;gn Technique, 9022-78R, Soflech, Inc., Waltham, MA

02154, November 1976.

Stay, J. F. "HIPO and Integrated Program Design", 1IBM

Systems Journal, V 15 n 2, 1976.

Stevens, We P.o o Myers, G.5 Jop Constantine, L. L.,
"Structured Design", IBM Systems Journal, V 13 n 2, 1974.

Xerox Meta-Symbol, Sigma 5-9 Computers, Language and

Operations Reference Mgﬁual 90-09-52E, Xerox Data

Yourdon, E. Techniques of Program Structure and Design,

R N

Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1975.

H1

TIIAM-0Q (O) *3STI-NEHL-JI (q) ¢@duenbas (®) %
isyongsuco Sutuueadoad paumyonays T amst3 F

PAGE

FUNCTTCNAL SOI''WARE DEVELOPMENT
¥ =

it RS

SOFTWARE DEVELOPMENT

FUNCTTO IAL

4?2

PAGE

sjusuoduo) jusudcTansg axemM3Jog TRUOTIOoUN “z aun8rg

m [N [

} T "

_ Hd A 2! Al 1y
| DN A T S S3LON id]
m -t SPYING D D _ h = Q..QIJ
Lo 4 ; Y

TP , R
A ks {7 A | !
aQuy ! +
v 7 o I /
~ e .../_4.\,: -~ | VLA O -dd
PG L L SNV
—~
e | e Is Y
.”l\ m(.d -.\U“;—‘lm Y(ML‘M.& /I‘
!
e SES——— —— — PRSI T
% A M O | ﬂ C= 1 1
| 3 T _ w N DG 4
io~sa~oxwd | & Sk
= - -~ S o) 8 o S 1
PP A {590
AT T T e — |
4 JINVID | w, J e
| 5y |

w NOTSET
__ RO IioNNd g

_
i

< e
= i el
- |
- y b e 7 mm .,
|
oNGO= “
e e e e ——————
o i A A P e
cai

T ——

"
L

43

\}w
1ia

PAC

OFTWARE DEVELOPMEN'

Q
P

s |
M
-
oS
3)
Z
=

AeTasao (q) ¢Teasie] (®)

(92

s S LS
24]
|
/
/i
f
i
i q
\ i
/ |
-~ i g
iy M.w.} / i
I~ | A
!
| |
/
,\~
/
/
.\
/
| /
— ¥ 4
2Wbas ¢

uotiejuawld8ag g aandtj
(e)
- e
_,C.QEMW.UW L.t@:smr@ml
"¢ !
Juswbasg JEE IS

T

SR N

B e n
&
- Sjuswsl@ BIBP JO uOTIRIUSSadadad J03 sToquAS ‘4 2an81g
cw
=
<
NP 1 e o Foos
a8 M |
5 | i
> ~ | £ AR JC
< J f) § o
= N S 85 | S |
= “ , (z19v) YUpasp —n:g@\rx“
S | | . . o
7 1)
% | |
“ i
b ! ! 0
E : g : 2lid o
= i ~-
= | “ 2iaie | w\AGLLG _C:L-mvfiH
w i i | R il 5
M M e =4 N S =
i | ~ i 1 > T %.\ILQP:A
Y | i |
q ‘ 4 Je1p2S Uil XS
| |
| _ 3 CNECRCLLS B By
() e e T
“ e, i ,r.,_C I _.uc_ JolVvy
7/
&) 1 A T - ' ! - ‘
m WTM..Q S | _(D.FAW 1o + e QO.\/ ,
| preedo | e
| P —— — e

T e —

45

PAGE

uctiejussaadsaa uoTiouny -°g aansty ﬁw.

FUNCTIONAL SOI'I'WARE DEVELOPMENT

/ :'\

PAGE 46

FUNCTIONAL SOFTWARE DEVELOPMENT

-

uotrjejussaadaa ydeasd

juswdoTaaep (q) $¢sjuauodwo) pue e3BQ (®) °S2ANIONIIS BIR(Q

$53¥ATY CO=- -5 — - — 301 N3aT

e . o —— it

(v

*9 @andtg

134 |[sSs3yaay

IWVN

1N3QT

- - - — - ——
e NS gt i - —— —e

— ; Y -

A S T R R I

47

PAGL

i

J0F UOT3IPIOU pUBYIJIOYS (D) ¢Iuswars oTUTS

UOT1D3TSdS juswsTs oT3uTls ﬁ
JO UOT3OST3S (q) fUOTIOSTSS SATIRILII (B) * UOTIIOSPS BIRQ 4 aan3tg

TIONAL SOFTWARE DEVELOPMIINT

/= /, e
3 {0 (9) (o) “
S &
=25 Aggrann FRR i w]
~¢ | P |
A,\,F\/ | m il)
i 5 D | < —me—
: o e (xJL HA (1Y |
———e] (WL C i (#DY
@ (zhg oot oL T=1) (
(3L

48

PAGE

FUNCTIONAL SOI'TWARE DLVELOPMENT

uotiejussaadsa ydeald

juswdoraasp (q) ¢‘uorieiussaadada 3ARYOMOTI (B)

O

é..n s = i
) T Y
7' qzI N & =% 1T ! p

s I s .. &

*sssooad uorsTOoS(Q

°8

(»)

2andtg

PENPRL AL L 2L

FUNCTLONAL SOFTWARE DEVELOPMENT

PAGE 49

Sequence Graph

Figure 9.

e G i e

R e

50

DEVELOPMFEN1T
PAGE

SOFTWARE

FUNCTIONAL

*Xsputr TeOTIoqeydIv (q) v
fxsput teorydeag (e) -seoTpUT 3aey) uswdolaasg TRUOTIOUNI QT 2andTJ .

e o} [

M e~ -\~ N_ 1 m ~
T el ARG —_— e _rem | ! — i
/ *h=0C o.\l_.l.\ - | _ ~ * {
G Wl RO a0 L e agd | | QHd
JHHa << e g B LeY E Sesinp e-z! |
M \ - ..lN'nﬂm ~ h.l.\L ~om1|.N
T \ i v i .
(ee2ot) wid - oo I
., S e Ya A
g 11T h m\\ 3 5 f..:rt_. 5 ollluJ
\V=C NIV (TF-0)AQd | (- Ue90¥d
- | |

|

AT, g 1 AP 24
e 0N T WV D084 |
R AR ‘\N|,‘VO_L”& !

\\1.L7 - o~ e B W —’ lﬂlaL |
L 7 S i 5 T I 1 ‘ |
{3} > SER) 482y - -]

HYd04dd It 1ShaT n\Fh_.\.(l f\ .m:l(sz\mf« s 3
P I\ Lls < Ewl ot ¢ S % i I |
(T)WY E9D0 2y Qlﬂ‘/\{_,.o,n.,.‘

— e v

m NIV
| ~0

» |

e [(-) d WO

SIUOANT NOILDNN=

=N |

51

DEVILOPMENT

5
<
o,
e
o
<
=
.
O
175
<
S
=
=
O
s
=
B

N Yy

J L 52

2aeyy auswdoTsadg TruOoTiOoUNni TeOTdAL

*1T @2andt3

1 Oe—O=——CO=— ¥

s 1d

3oN30
AdHiNIOS

AMYINIWOS m,mp..ﬂﬂu.;\u =

No SRR

] c. 0 =3
M.UQ;MDFUW

S
Y—-—‘/

LCER
> -
,\ 4 O M - T
s
= g f

< it

e ———

52

PAGE

FUNCTIONAL SOFTWARE DEVELOPMENT

L

*0dd TealT-(dor) 3sarg

ZT 2an31g

IM. nNd el e, ~Q..ﬂ

oy o~

/

Wi ¥ 20dd

.,c. O v

=

1LadN

21 e R SR g

——————

DEVELOPMENT

SOFTWARE

FUNCTTIONAL

53

b

PA(

SLndNl AO0LINOIW = NINOW 2

HO0TD AWTL-IWRN WONH4 IWTIL = | »
LINO HOLINOW NO QIONVHD 33¥Y S307WA NIHM Hpdo0ud
STHL Dud0333L0T :\U.wﬂ.r:: ril?7d009dd IUYIVLIS .\‘,..w A 35 WY
SoLyls NO-440 QY TVARIANT 9NIYOLINOW ‘@3 [1¥=2 dod
2UYITQNT NO-H440 SNIYLNOD OSIY UINO SuYD SATSNRLNE
NI AN3TILVL HOIYT HOS SMHALOHA nhzuaktm 4O _INZWENOSYSW
‘ASYT 4C IWTL QNVY WA SEILNT ONIHOLINOW SHIVLNCGD .

/3734 AIYNEIINT = 3712NT

S S.L0ON

SINIT LY

*0dd T°AST-puoOOayg

"€T 2an3t3

NINOW

M:/

IIYO - ATISNIINT

SHOLINOW

W Eo0dd

B R

54

PAGE

SOT'TWARE DEVELOPMENT

FUNCTTCNAL

AP

*0Qd TeAs1-do3 Jo waojy Teury H1 2and1J

SA S G THOLTINOW ANZ2T10Wd

¥
WY EDONd ¢ O1pdnTI

HIdWS -0 .

LOPMENT
55

PAGE

FUNCTIONAL SOFTWARE DEVI

b -

*de3s (juswudoTaadp BIBP) 3ISATI JO PUS 3@ DU TIAST-PATY3 [PTIIR4 G 2andTJ

10dNT ¥OL INOW LNITLPd =pNIW *
‘QYODIY UNTILWS JyN¥ZINT = DBAUNT =
¥3IgWoN Q929 uz..n
40 %N3gWwoN =8N !

S=.10N

Bt
Sq=24

m
_” GOUIW S B
| | jepe -~ - - 0k -0 L] WENGHS
M (GONTW
O
T - - = - 3 == -)FI4NT
, (gM)>axN1
HNIYOLINOW IN3TILHd SNOWLNOD
AC LT NOW C=2

BN

i

i

T e

56

-
-

oF

PA

FUNCTIONAL SOFTWARE DEVELOPMENT

L

*0Q3 TeAST-patyl 23eTdwo) °gT a2ansdrg

z <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>